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ABSTRACT 
 

 Three recently proposed and promising methods for post-processing ensemble 

forecasts based on their historical error characteristics, i.e., ensemble-MOS methods, are 

compared using a multi-decadal reforecast data set.  Logistic regressions and non-

homogeneous Gaussian regressions are generally preferred for daily temperature, and for 

medium-range (6–10 and 8–14 day) temperature and precipitation forecasts.  However, 

the better sharpness of medium-range ensemble-dressing forecasts sometimes yields the 

best Brier scores even though their calibration is somewhat worse.  Using the long (15- or 

25-year) training samples that are available with these reforecasts improves the accuracy 

and skill of these probabilistic forecasts to levels that are approximately equivalent to 

gains of one day of lead time, relative to using short (1- or 2-year) training samples. 



 3 

1.  Introduction 

 Ensemble forecasts are now regularly produced by numerical weather prediction 

facilities worldwide (Toth and Kalnay 1993, 1997, Molteni et al. 1996, Houtekamer et al. 

1996). The intent of ensemble forecasting is to provide a flow-dependent sample of the 

probability distribution of possible future atmospheric states.  Ideally, the probability of 

any event could be skillfully estimated directly from the relative event frequency in the 

ensemble.  Unfortunately, even when the ensemble has a small spread, so that the 

expected forecast uncertainty is small and the expected skill is large, the actual skill of 

such probabilistic forecasts may be much smaller that expected. Commonly, the forecasts 

are contaminated by systematic biases, and the ensemble spread is too small (e.g., Hamill 

and Colucci 1997, 1998, Buizza et al. 2005).  These biases may be due to model errors 

due to insufficient resolution (Weisman et al. 1997, Mullen and Buizza 2002, Szunyogh 

and Toth 2002, Buizza et al. 2003) or sub-optimal parameterizations, sub-optimal 

methods for generating the initial conditions (Barkmeijer et al. 1998, 1999, Hamill et al. 

2000, 2003, Wang and Bishop 2003, Sutton et al. 2006), the deterministic formulation of 

the forecast model (Palmer 2001, Wilks 2005), and other causes. 

 Consequently, many methods of calibrating the probabilistic forecasts from 

ensembles have been proposed.   Most of these methods share a general approach of 

correcting the current forecast using past forecast errors, as has been done for 

deterministic forecasts in the Model Output Statistics, or “MOS” procedure (Glahn and 

Lowry 1972, Carter et al. 1989, Vislocky and Fritsch 1995, 1997, Krishnamurti et al. 

1999).  More recently, technique development has focused on probabilistic methods, 

including rank histogram techniques (Hamill and Colucci 1997, 1998, Eckel and Walters 
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1998), ensemble dressing (i.e., kernel density) approaches (Roulston and Smith 2003, 

Wang and Bishop 2005, Fortin et al. 2006), Bayesian model averaging (Raftery et al. 

2005), non-homogeneous Gaussian regression (Gneiting et al. 2005), logistic regression 

(Hamill et al. 2004, Hamill and Whitaker 2006), analog techniques (Hamill et al. 2006, 

Hamill and Whitaker 2006), “forecast assimilation” (Stephenson et al. 2005), and several 

others.   

 If the systematic errors in the ensemble are consistent, then small training data 

sets may be adequate for correction of ensemble forecast errors.  However, systematic 

errors may potentially vary from one synoptic situation to the next, or the small training 

data set may be inadequate for the forecast problem at hand.  For example, if calibrating a 

8–14 day average forecast, a month of training data will provide only barely four 

independent samples of training data.  In such situations, a long training data set from a 

fixed numerical weather prediction model would be helpful.   Recently, such an ensemble 

“reforecast” dataset was produced (Hamill et al. 2006) for a reduced-resolution, circa 

1998 version of the National Centers for Environmental Prediction’s (NCEP’s) Global 

Forecast System (GFS).  A 15-member ensemble reforecast has been produced out to 15 

days lead for every day from 1979 to current.  Skill improvements utilitizing the long 

reforecast training data set have been demonstrated for 6-10 day and week-2 forecasts 

(Hamill et al. 2004, Whitaker et al. 2006), probabilistic quantitative precipitation 

forecasts (Hamill et al. 2006, Hamill and Whitaker 2006, Fortin et al. 2006), and 

hydrologic forecasts (Clark and Hay 2004, Gangopadhyay et al. 2004). 

 The reforecast data set described above offers an interesting opportunity to test a 

variety of the proposed methods for calibration of ensemble forecasts in a statistically 
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rigorous fashion.  Recently, Wilks (2006a) compared a wide variety of calibration 

methods using the low-order Lorenz (1996) model (see also Lorenz and Emanuel 1998).  

The most promising approaches were logistic regression, non-homogeneous Gaussian 

regression (linear regression with non-constant prediction errors that depend on the 

ensemble spread), and ensemble dressing.  Accordingly, in this article we shall compare 

these three techniques, by constructing probabilistic daily surface-temperature forecasts 

at lead times from 1 to 14 days, and average temperature and precipitation forecasts at  6–

10 and 8–14  -day lead times.  We will examine several questions.  First, what is the 

relative performance of these techniques for producing post-processed probability 

forecasts from the reforecast data set?  Second, does this relative performance change 

depending on the lead time, the lengths of the available training data, or other aspects of 

the forecast such as the forecast quantile?  Third, how much absolute improvement is 

obtained by training the three ensemble-MOS methods with large vs. small samples?    

 The rest of the article will be organized as follows.  Section 2 reviews the three 

ensemble-MOS methods to be compared, and Section 3 describes the reforecast and 

observational data to be employed.  Section 4 outlines the experimental set-up, Section 5 

presents cross-validated probabilistic verification results for the various forecasts, and 

Section 6 concludes.
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2.  Candidate ensemble-MOS methods 

 Wilks (2006a) evaluated a collection of ensemble-MOS methods that have been 

proposed in the literature using the low-order Lorenz (1996) model.  The three most 

promising of these are described in this section, and are compared using the reforecast 

data set in Section 5.   

 

2a.  Logistic regression (LR)  

 The probability that a future observation, or verification V, will be less than or 

equal to a forecast quantile q can be specified using the 2-predictor logistic regression 

 

 

! 

Pr(V " q) =
exp(b0 + b1x ens + b2x enssens)

1+ exp(b0 + b1x ens + b2x enssens)
   .                                        (1) 

 

Here, b0, b1, and b2 are fitted constants, x
e n s

refers to the ensemble-mean forecast, and sens 

refers to the ensemble spread, i.e., the standard deviation.  This equation, referred to as 

LR(2) hereafter, produces an “S-shaped” prediction surface that is bounded by 0 < Pr{V 

≤ q} < 1 (e.g., Wilks 2006b). Wilks (2006a) used the ensemble spread as the second 

logistic regression predictor, but here the product of the ensemble mean and the ensemble 

spread has been used because it yielded slightly better results for the reforecast data.  This 

form of logistic regression in Eq. (1) also has the appealing interpretation that it is 

equivalent to a 1-predictor logistic regression that uses the ensemble mean as the single 

predictor, but in which the regression parameter b1 is itself a linear function of the 

ensemble standard deviation.  Therefore, the steepness of the logistic function as it rises 

or falls with its characteristic “S” shape can increase with decreasing ensemble spread, 
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yielding sharper forecasts (more frequent use of extreme probabilities) when the 

ensemble spread is small.   

 Hamill et al. (2004), working with 6–10 and 8–14 -day forecasts of accumulated 

precipitation, found that the second predictor in Eq. (1) was not justified (i.e., did not 

improve forecast performance for independent data), and used the 1-predictor version of 

Eq. (1) in which b2 = 0.  This important special case of Eq. (1), with ensemble mean as 

the single predictor, will be referred to as LR(1) hereafter.  For both LR(2) and LR(1), the 

regression functions are fit iteratively, using the method of maximum likelihood (e.g., 

Wilks 2006b).   

 

2b.  Non-homogeneous Gaussian regression (NGR) 

 Gneiting et al. (2005) proposed an extension to conventional linear regression, 

referred to here as non-homogeneous Gaussian regression (NGR).  The approach is to 

construct a conventional regression equation using ensemble mean as the single predictor, 

but to allow the variance characterizing the prediction uncertainty to vary as a linear 

function of the ensemble variance.  That is, the variances of the regression errors are non-

homogeneous (not the same for all values of the predictor), as is conventionally assumed 

in linear regression.  Assuming also that the forecast uncertainty is adequately described 

by a Gaussian distribution leads to forecast probability estimation using  
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Here, a and b are the linear regression intercept and slope, and c and d are parameters 

relating the prediction variance to the ensemble variance.  The symbol Φ indicates the 
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cumulative distribution function of the standard Gaussian distribution, and the quantity in 

the square brackets is a standardized variable, or “z-score” (i.e., a forecast quantile q 

minus its regression mean, divided by the prediction standard deviation), so that Eq. (2) 

yields forecast probability distributions that are explicitly Gaussian.  Following Gneiting 

et al. (2005), the four parameters in Eq. (2) are fit iteratively, in order to minimize the 

continuous ranked probability score (e.g., Wilks 2006b) for the training data.   

 Equation (2) reduces to conventional ordinary least squares (OLS) predictions 

when the denominator is equal to the overall, constant prediction standard deviation (c ≈ 

MSE and d = 0).  This important special case is also considered in Section 5.   

 

2c.  Gaussian ensemble dressing (GED) 

 The method of ensemble dressing (Roulston and Smith 2003, Wang and Bishop 

2005) constructs an overall forecast probability distribution by centering probability 

distributions at each of the (de-biased) ensemble members, and then averaging these nens 

probability distributions.  Ensemble dressing is thus a kernel density smoothing (e.g., 

Wilks 2006b) approach.  When the smoothing kernels are Gaussian distributions, then the 

method is known as Gaussian ensemble dressing (GED), and the resulting forecasts for 

quantiles q are calculated as  
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Pr(V " q) =
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where the tilde denotes that any overall bias in the training data has been removed from 

each ensemble member xi.  That is, a single correction, equal to the average difference 

between the ensemble means and their corresponding verifications in the training data, is 
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applied equally to all ensemble members, so that the ensemble dispersion is not affected.  

Note that even though the dressing kernels are specified as Gaussian, the overall forecast 

distribution is in general not Gaussian, and indeed can take on any shape that might be 

indicated by the distribution of the underlying ensemble members.   

 The key parameter in Eq. (3) is the standard deviation of the Gaussian dressing 

kernel, σD.  Roulston and Smith (2003) propose fitting this parameter according to the 

forecast errors of the “best” member in each ensemble, although in real forecast 

situations, definition of this best member can be problematic.  Here we use the Gaussian 

dressing variance proposed by Wang and Bishop (2005),  
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which is calculated as the difference between the error variance for the ensemble-mean 

forecasts and the (slightly inflated) average of the ensemble variances, over the training 

data.  Equation (4) can sometimes fail (i.e., yield negative dressing variances) if the 

forecast ensembles in the training data are sufficiently over-dispersed, on average.  In this 

study, this difficulty occurred only rarely in the training data; and in these cases Eq. (4) 

was formally set to zero, implying that all probability is assigned to the nens de-biased 

points, which is equivalent to estimating forecast probability using (de-biased) ensemble 

relative frequency (the “democratic voting” method).   
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3.  Forecast and verification data 

 Ensemble forecasts for twice-daily temperature and precipitation were taken from 

the GFS reforecast data set (Hamill et al. 2006), for the period January 1979 through 

February 2005.   Verification data are observed maximum temperature, minimum 

temperature and 24-hour accumulated precipitation at 19 midnight-observing, first-order 

U.S. National Weather Service stations:  Atlanta (ATL), Bismarck (BIS), Boston, (BOS), 

Buffalo (BUF), Washington, D.C. (DCA), Denver (DEN), Dallas (DFW), Detroit 

(DTW), Great Falls (GTF), Los Angeles (LAX), Miami (MIA), Minneapolis (MSP), New 

Orleans (MSY), Omaha (OMA), Phoenix (PHX), Seattle (SEA), San Francisco (SFO), 

Salt Lake City (SLC), and St. Louis (STL).  The reforecast data are available on a 2.5˚ x 

2.5˚ grid, and grid points nearest each of the 19 first-order stations were selected.

 Two types of probabilistic forecasts are considered:  daily maximum and 

minimum temperature forecasts, and medium-range (6–10 and 8–14 -day average) 

temperature and precipitation forecasts.  Ensemble forecasts for near-surface (2 m a.g.l.) 

temperature, and accumulated precipitation, are available from the reforecast data set for 

0000 and 1200 UTC, only.  The calibration of maximum and minimum temperatures is 

an especially challenging application of this data set, as the daily maximum and 

minimum temperatures typically occur at times different than 0000 and 1200 UTC.   

 Probabilistic forecasts for daily maximum and minimum temperatures were made 

for lead times of 1, 2, 3, 5, 7, 10, and 14 days; and pertain to the following seven 

quantiles:  q.05 (5th percentile), q.10 (lower decile), q.33 (lower tercile),  q.50 (median), q.67 

(upper tercile), q.90 (upper decile), and  q.95 (95th percentile).  These quantiles were 

defined locally, both in time and individually for each verifying station, to avoid artificial 
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skill deriving from correct “forecasting” of variations in these climatological values 

(Hamill and Juras, 2006).   

 For the daily temperature forecasts, the cooler of these two twice-daily forecast 

temperatures (usually the 1200 UTC value) during each midnight-to-midnight observing 

period was assigned as the predictor for minimum temperature. The warmer of the two 

was assigned as the maximum temperature predictor.  These assignments were made 

separately for each of the nens = 15 ensemble members.  

 For the 6–10 and 8–14 -day temperature forecasts, the twice-daily temperature 

forecasts were averaged, and the twice-daily precipitation forecasts were summed, 

separately for each ensemble member, over the respective lead times. For these medium-

range forecast probability forecasts, the two terciles, q.33 and q.67 only, are considered.   

 

4.  Experimental set-up 

 Forecast equations were fit using 1, 2, 5, 15, and 25 years of training data, and 

evaluated using cross validation.  For each forecast method described in Section 2, new 

forecast equations were fit for each day of the 26-year data period, using training-data 

windows of ±15, ±30, and ±45 days around the corresponding date in each of the training 

years.  To the extent possible, training years were chosen as those immediately preceding 

the year omitted for cross validation, and to the extent that this was not possible the 

nearest subsequent years were used.  For example, using 1 year of training data and a 

±15-day window, initial dates of training data for forecasts initialized on 1 March 1980, 

were 14 February – 16 March 1979.  For forecasts initialized on 1 March 1980 but using 
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2 years of training data, data from these same initial dates in both 1979 and 1981 were 

used for training.   

 In addition, for the daily temperature forecasts, a “0-year” training strategy was 

tested, which is meant to simulate operational approaches to continuously updating MOS 

equations using only the most recent data (e.g., Wilson and Valée 2002, 2003).  Here 

training data are taken only from the most recent 45 days available for each lead time, 

and so include only initial dates beginning 45 days (for the 1-day lead time) to 58 days 

(for the 14-day lead time) earlier.   

 

5.  Results 

5a.  Daily temperature forecasts 

 Figure 1 shows the cross-validated ranked probability scores (RPS) for the daily 

temperature forecasts, using the seven forecast temperature quantiles listed in Section 3.  

For clarity, only results for the 1-year and 25-year training periods are contrasted, and in 

each case only results for the training window yielding the best scores are shown.  

Qualitatively, results for minimum temperature forecasts (Fig. 1a) and maximum 

temperature forecasts (Fig. 1b) are similar, so both here and subsequently the discussion 

will focus on the minimum temperature forecasts. 

 Results for the longer training period (solid lines) are clearly superior (lower RPS) 

to those for the short training period (dashed lines).  Best results for the 1-year training 

period are obtained for the longest (±45, or 91 days) training window, whereas when 

many years of training data are available the best results are obtained with the 

climatologically more focused short (±15, or 31 days) training window.  Similarly, the 
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more elaborate LR(2) and NGR models in Eqs. (1) and (2), respectively, are not 

supported by (i.e., are overfit when using) the short 1-year training period, so that the 

simpler LR(1) and OLS special cases are chosen as best.  In contrast, the longer training 

period provides sufficient data for the more elaborate LR(2) and NGR models to be 

usefully applied.   

 For the 25-year training period, logistic regressions provide a small but consistent 

improvement over the linear regressions (NGR), in terms of overall RPS.  Both yield 

better RPS than the climatological probabilities (RPSclim), over the entire 2-week forecast 

period.  In contrast, for the short training period, the linear (OLS) regressions yield better 

RPS than the logistic [LR(1)] regressions.  In no case do the GED forecasts yield the best 

overall results here, and the improvement in RPS for the GED forecasts between the 1- 

and 25-year training samples is small.  Overall, and in particular for the linear and 

logistic regressions, differences in training lengths appear to be more important than 

differences in the forecast methods.   

 Figure 2 provides a somewhat different perspective on the overall RPS values for 

the daily minimum temperatures.  Here cross-validated RPS for the best combination of 

forecast method (indicated by the plotting symbols) and training window (indicated 

parenthetically) is shown as a function of the training length.  Here “0 years” training 

length denotes fitting the forecast equations using the preceding 45 days, only, as the 

training period.  Using the best combination of forecast method and training window, the 

forecasts improve over the climatological RPS, except for day-14 forecasts made using 

the shortest training periods.  Again, the linear regressions perform best for the shorter 

training periods, whereas the logistic regressions are preferred for the longer training 
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lengths, although as indicated in Figure 1 these differences among the forecast methods 

are often slight.  There appears to be very little improvement in RPS when training data is 

increased from 15 to 25 years, and for both of these training lengths, the shortest (31-day) 

training window yields the best results.  Using 15 or 25 years training data gains 

approximately one day of lead time in terms of RPS, relative to the shorter training 

lengths.   

 Fewer years in the training sample can be only partly compensated through use of 

wider training windows.  For the most part, best results for 2- and 5-year training periods 

are obtained with 61-day windows, and best results for the 1-year training period are 

usually obtained using the 91-day training window.  Training on the previous 45 days 

only (“0 years”) yields results that are quite similar to the 1-year training period (although 

with wider training windows), in terms of this overall accuracy measure.   

 Ranked probability scores provide a convenient single-number summary of 

forecast performance, but also combine and obscure some important details.  Figure 3 

shows a partial disaggregation of the RPS for the minimum temperature forecasts, in 

terms of Brier scores for Pr{V ≤ q0.05} (Fig. 3a) and Pr{V ≤ q0.33} (Fig. 3b).  In general, 

results for forecasts of the lower tercile (Fig. 3b), which are representative of forecasts for 

other mid-distribution quantiles, are similar to the overall RPS values for daily minimum 

temperature forecasts shown in Fig. 2.  In particular, the two-predictor LR(2) logistic 

regressions are generally best for the longer training samples, linear regressions (although 

usually NGR rather than OLS) are preferred for the shorter training samples, results for 

15- and 25-year training periods are similar, and use of these longer training periods 

improves over results for the shorter training periods sufficiently to gain approximately 
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one day of lead time.  Most of these observations hold also for Brier scores for the 5th 

percentiles (Fig. 3a), which are representative of those for other extreme quantiles, except 

for results regarding the best forecast method.  Here the NGR linear regression method is 

justified in most cases, regardless of the training sample size. 

 A yet more detailed comparison of the forecast methods can be obtained from 

reliability diagrams for probability forecasts of particular quantiles.  Figure 4 shows 

representative examples, for 2-day ahead forecasts of the lower terciles of minimum 

temperature, for the (October – March) cool season, using 1 year (Fig. 4a) and 15 years 

(Fig. 4b) of training data.  For 1 year of training data the best-calibrated forecasts are 

clearly the linear regressions.  Here the OLS forecasts are slightly more reliable (using 

the Murphy, 1973, decomposition of the Brier score, as shown in the inset) than the NGR 

forecasts.  Reliability of the LR(1), LR(2) and GED forecasts are clearly inferior, and in 

particular exhibit over-forecasting for the higher probabilities.  Interestingly, the GED 

forecasts yield the best Brier score in this case, as a result of their use of the higher 

probabilities more frequently, yielding a higher resolution (RES) component of the Brier 

score decomposition, even though they are the least well calibrated.  For the longer, 15-

year training sample (Fig. 4b), the best forecasts overall are provided by the LR(2) 

method.  All of the forecast methods show improvement over results from Fig. 4a 

although, consistent with Fig. 1, the GED forecasts improve least.   

 Figure 5 shows reliability diagrams for day-2 cool-season forecasts of minimum 

temperature 5th percentiles.  Overall, the relative results are similar to those in Fig. 4, 

although the calibrations are notably poorer, except for the linear regressions using 15 

years of training data.  The linear regressions are preferred for both training lengths, the 
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15-year training sample in Fig. 5b is not sufficient for the logistic regressions to produce 

fully calibrated forecasts, and of course the higher probabilities are used much less 

frequently for this extreme low quantile.  

 

5b.  Medium-range temperature and precipitation forecasts 

 Table 1 summarizes the broad features of the skill of the medium-range tercile 

probability forecasts, again made using the methods described in Section 2.  These cross-

validated results are for the ranked probability skill score, calculated relative to the 

climatological probabilities of Pr{V ≤ q1/3} = 1/3 and Pr{V ≤ q2/3} = 2/3, and contrasting 

the 1-year versus the 25-year training periods.  Again the best training windows in each 

case have been chosen, which are 91 days for the 1-year training and for precipitation 

forecasts with 25 years of training data, and 31 days for temperature forecasts with 25 

years of training data.  Best results in each case are indicated in boldface. 

 Clearly the results are quite poor with only one year of training data, especially 

for the precipitation forecasts, for which all skills are negative.  In several cases the GED 

forecasts yield the least bad results in this limited-data situation.  With ample training 

data, the NGR forecasts are best for temperature, although the OLS and LR(1) forecasts 

are nearly as good.  In contrast the linear regression forecasts are quite poor for 

precipitation, which is not surprising given that their forecast distributions are explicitly 

Gaussian.  Here the best forecasts according to this overall measure are those made with 

the single-predictor LR(1) method.  Consistent with the results obtained by Hamill et al. 

(2004), the 2-predictor LR(2) logistic regressions do not provide an improvement for 

these medium-range forecasts.   
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 Figure 6 provides more detail on the performance of the medium-range forecasts. 

Here Brier scores are shown as functions of the length of the training data for the best 

forecast methods in each instance.  As was the case for daily temperature forecasts, there 

is little improvement as the training length increases from 15 to 25 years (see also Hamill 

et al. 2004).  The best temperature forecasts generally result from linear regressions, and 

from the NGR method in particular for the longer training lengths.  The LR(1) method 

yields best Brier scores for forecasts of the upper tercile of precipitation, but the GED 

forecasts exhibit slightly better Brier scores for the lower tercile of precipitation, and for 

the lower-tercile 8–14 day temperature forecasts.   

 The reliability diagrams for the 6–10 day precipitation forecasts for October–

March in Fig. 7 illustrate the reason for the good Brier scores exhibited by the GED 

forecasts in Fig. 6.  Here the inset tables indicate that the GED forecasts yielded the best 

Brier scores overall (note that Fig. 6 shows full-year, not cool-season, results) for both 

terciles, yet are notably less well calibrated than forecasts from either of the logistic 

regression methods.  This apparent discrepancy is explained by comparing the inset bar 

charts (note logarithmic vertical scales) showing frequencies of use of the forecast 

probabilities.  For the LR(1) forecasts these are concentrated near the climatological 

values of 1/3 (Fig. 7a) and 2/3 (Fig. 7b); whereas the GED forecasts are much sharper, as 

these distributions of forecast useages are much more nearly uniform.  Thus, even though 

the calibration of the GED forecasts is not as good, the Brier score credits them for their 

increased sharpness.  It is possible that in this case some forecast users would find the 

GED forecasts more valuable, and that others might find the LR(1) forecasts more 

valuable (e.g., Ehrendorfer and Murphy 1988).  The inset tables indicate that Brier scores 
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for the LR(1) forecasts are nearly as good as those for the GED forecasts.  In contrast, 

neither of the Gaussian linear regression forecasts exhibit positive skill relative to the 

climatological probabilities (BSclim = 0.2222).   

 

5.  Summary and Conclusions 

 This study has used the reforecast data set (Hamill et al. 2006) to compare three 

promising methods for ensemble-MOS forecasting identified in Wilks (2006a).  The three 

methods are logistic regression (e.g., Hamill et al. 2004, Wilks 2006b), non-

homogeneous Gaussian regression (Gneiting et al. 2005), and Gaussian ensemble 

dressing (Roulston and Smith 2003, Wang and Bishop 2005).  The methods were tested 

for probabilistic forecasts of daily temperature at lead times of 1 to 14 days, and for 6–10 

and 8–14 -day averages of both temperature and precipitation.   

 Reinforcing the results of Hamill et al. (2004), it was found that the longer (15- 

and 25-year) training samples available in the reforecast data set provide substantial 

forecast skill increases over short (1-, 2-, or 5-year) training periods, including use of the 

preceding 45 days only (“0 years”) as a training period.  In particular, use of the longer 

training periods gains approximately one day of lead time, in terms of the accuracy and 

skill metrics employed, relative to the shorter training samples.   

 There appears to be no single best forecast method for all applications, among the 

three tested.  When long training samples were available, the LR(2) (2-predictor logistic 

regression) method yielded the best RPS overall for daily temperature forecasts, and the 

best Brier scores for central forecast quantiles.  However, the NGR forecasts exhibited 

slightly greater accuracy for probability forecasts of the more extreme daily temperature 
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quantiles.  For 6–10 and 8–14 -day temperatures, the NGR forecasts were generally best.  

For the longer-range precipitation forecasts, the single-predictor logistic regressions were 

often best, as was found by Hamill et al. (2004), although in some instances the much 

better sharpness of the GED forecasts compensated for their poorer calibration to yield 

better Brier scores.  Overall, differences in training lengths usually produced larger skill 

differences than did different forecast methods.   

 The combined results of Wilks (2006a) and the present paper cannot be regarded 

as the last word on ensemble-MOS methods.  For example, Fortin et al. (2006) have 

recently proposed an ensemble-dressing method in which different members of the 

ranked ensemble may use different dressing kernels.  Another possible extension of 

ensemble dressing could be to dress regression-corrected ensemble members (i.e., 

defining 

! 

˜ x 
i
 in Eq. (3) as the result of a linear regression), which would yield a method 

similar to NGR, but with nonparametric forecast distributions.  Similarly, this research 

does not make clear which ensemble-MOS method will perform best in calibrating other 

forecast variables, such as wind speed or direction, cloud cover, precipitation type, etc.  

Investigating such questions should be part of an overall program of development of 

calibrated probabilistic prediction system. 

 The judgment regarding whether operational use of reforecasts is worthwhile is 

ultimately a subjective, managerial one.  However, the improved skill from calibration 

using large data sets is equivalent to the skill increases afforded by perhaps 5-10 years of 

numerical modeling system development and model resolution increases.  While 

computationally expensive, the reforecasts may offer a comparatively inexpensive way of 

achieving increases in forecast skill.  Hamill et al. (2006, conclusion section) discuss 
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some possible ways that reforecasts can be implemented into operations without unduly 

affecting the model development and production. 
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Table 1.  Percent RPS skill, relative to the climatological probabilities, for tercile 

forecasts of temperature and precipitation, at lead times of 6–10 and 8–14 days.  Best 

skills in each case are indicated in bold.  

 

 
 
 
 
 

  1 year Training    25 years Training  
 T 6–10 T 8–14 P 6–10 P 8–14  T 6–10 T 8–14 P 6–10 P 8–14 

LR(1) 3.2 –8.9 –5.2 –9.4  14.5 7.4 2.9 1.3 
LR(2) –16.2 –32.2 –19.1 –26.0  10.3 2.1 1.8 –0.3 
NGR 7.9 –1.4 –15.2 –14.9  14.7 7.7 –10.1 –8.3 
OLS 8.1 –1.1 –17.4 –17.5  14.5 7.6 –13.2 –10.9 
GED 3.5 1.1 –1.6 –3.7  6.7 5.9 1.5 –0.6 
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Figure Captions 
 

Figure 1.  Cross-validated ranked probability scores for daily (a) minimum, and (b) 

maximum temperatures, as functions of lead time, for 1- and 25 years of training data.  

Scores for the training window yielding best results in each case are shown.   

 

Figure 2.  Cross-validated RPS as a function of training length, for best combinations of 

forecast methods and training windows.  “0 years” training length indicates use of the 

preceding 45 days, only, for the training period.    

 

Figure 3.  Brier scores for daily temperature forecasts of (a) 5th percentiles, and (b) lower 

terciles, as functions of years of training data.  Best combinations of forecast method and 

training window are shown.  “0 years” training length indicates training on the preceding 

45 days only.  

 

Figure 4.  Reliability diagrams for day-2 October–March forecasts of the lower tercile of 

minimum temperature distributions, using (a) 1 year, and (b) 15 years of training data. 

Insets show frequencies of use of the forecasts for the best calibrated method in each 

case, and terms in the Murphy (1973) decomposition of the Brier score for each forecast 

method.  

 

Figure 5.  As Figure 4, for forecasts of the 5th percentile of cool-season minimum 

temperature.  
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Figure 6.   Brier scores for medium-range forecasts of outcomes below (a) the lower 

tercile, and (b) the upper tercile, of the climatological distributions, as functions of the 

length of the training data.  Best forecast methods and training windows are shown in 

each case.    

 

Figure 7.  As Figure 4, for 6–10 day forecasts that precipitation is at or below the (a) 

lower terciles, and (b) upper terciles, using 15 years of training data.   
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Figure 1. Cross-validated ranked probability scores for daily (a) minimum, and (b)

maximum temperatures, as functions of lead time, for 1- and 25 years of training

data. Scores for the training window yielding best results in each case are shown.
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(b) lower terciles, as functions of years of training data. Best combinations of
forecast method and training window are shown. “0 years” training length indi-
cates training on the preceding 45 days only.



10
4

10
3

10
2

log[p(f)], LR(2)

10
1

(b) Day 2, 15 years, 33rd %-ile

REL RES BS
LR(2) .0002 .1103 .1121
LR(1) .0002 .1085 .1135
NGR .0004 .1082 .1144
OLS .0002 .1072 .1152
GED .0013 .1070 .1165

0.0 0.2 0.4 0.6 0.8 1.0

10
4

10
3

10
2

10
1

log[p(f)], NGR

(a) Day 2, 1 year, 33rd %-ile

REL RES BS
LR(2) .0017 .1008 .1231
LR(1) .0011 .1020 .1213
NGR .0008 .1037 .1193
OLS .0005 .1028 .1199
GED .0019 .1049 .1192

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Forecast Probability Forecast Probability
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Figure 5. As Figure 4, for forecasts of the 5th percentile of cool-season minimum temperature.
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Figure 6. Brier scores for medium-range forecasts of outcomes below (a) the
lower tercile, and (b) the upper tercile, of the climatological distributions, as
functions of the length of the training data. Best forecast methods and training
windows are shown in each case.
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Figure 7. As Figure 4, for 6-10 day forecasts that precipitation is at or below the
(a) lower terciles, and (b) upper terciles, using 15 years of training data.
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